EECS730: Introduction to Bioinformatics

Lecture 09: Non-coding RNA structure prediction

Slides adapted from Dr. Shaojie Zhang (University of Central Florida)

microRNA

Tiny RNAs–"Biological Equivalent of Dark Matter"–Wins Prestigious AAAS Newcomb Cleveland Prize

The discovery of micro-sized RNA molecules (miRNAs)-a breakthrough described as "the biological equivalent of dark matter, all around us but almost escaping detection"-earned the coveted 2001-2002 AAAS Newcomb Cleveland Prize.

Three journal reports, published in the 26 October 2001 issue of Science, were named to receive the Prize, the oldest award conferred by the American

C. elegans

- miRNAs were the second major story in 2001 (after the genome).
- Subsequently, many other non-coding genes have been found

"for their discovery of RNA interference - gene silencing by double-stranded RNA"

riboswitches

• -Breaker Lab

Decoding the genome

- Current gene prediction methods only work well for protein coding genes.
- Non-coding RNA genes are undetected because they do not encode proteins.
- Modern RNA world hypothesis:
 - There are many unknown but functional ncRNAs. [Eddy Nature Reviews (2001)]
 - Many ncRNAs may play important role in the unexplained phenomenon.[Storz Science (2002)]

Noncoding RNAs

RNA

We sequenced RNA¹⁶ from different cell lines and multiple subcellular fractions to develop an extensive RNA expression catalogue. Using a conservative threshold to identify regions of RNA activity, 62% of genomic bases are reproducibly represented in sequenced long (>200nucleotides) RNA molecules or GENCODE exons. Of these bases, only 5.5% are explained by GENCODE exons. Most transcribed bases are within or overlapping annotated gene boundaries (that is, intronic), and only 31% of bases in sequenced transcripts were intergenic¹⁶.

Noncoding RNAs

Non-coding RNA (ncRNA)

- RNA acting as functional molecule.
- Not translated into protein.
- The RNA world hypothesis:
 - RNA are as important as protein coding genes.
 - Many undiscovered ncRNA exist
- Computational methods for discovering ncRNA are not mature.
- What are the clues to non-coding genes?
 - Structure: Given a sequence, what is the structure into which it can fold with minimum energy?

RNAs conserve on structure rather than sequence

http://www.sanger.ac.uk/Software/Rfam/

RNA structure basis

- Key: RNA is single-stranded. Think of a string over 4 letters, A, C, G, and U.
- The complementary bases form pairs.
 - A <-> U, C <-> G, G <-> U
- Base-pairing defines a secondary structure. The base-pairing is usually non-crossing.
- Functional biomolecules are often energetically stable, i.e. they have low minimum free energy (MFE)

Components of RNA structure

The RNA secondary structure folding problem

- ncRNA is not a random sequence.
- Most RNAs fold into particular base-paired secondary structure.
- Finding the set of base pairs that minimize the free energy
- Most basepairs are non-crossing basepairs.
- Any two pairs (i, j) and (i',j'): i < i' < j' < j or i' < i < j < j' or i < j < i' < j or i' < j' < i < j
- Canonical basepairs:
 - Watson-Crick basepairs:
 - G C
 - A U
 - Wobble basepair:
 - G U

Naïve formulation

- A simple energy model is to maximize the number of basepairs to minimize the free energy. [Waterman (1978), Nussinov et al (1978), Waterman and Smith (1978)]
- G C, A U, and G U are treated as equal stability.
- Contributions of stacking are ignored.

Problem 1: [Base pair maximization problem] Given an RNA sequence, determine a set of base pairs in a RNA sequence such that the number of base pairs is maximal and no base pairs cross each other.

Dynamic programming solution

- Let *s*[1...*n*] be an RNA sequence.
- $\delta(i,j) = 1$ if s[i] and s[j] form a complementary base pair, else $\delta(i,j) = 0$.
- M(i,j) is the maximum number of base pairs in s[i...j].

Dynamic programming solution

$$M(i,j) = max \begin{cases} M(i,j-1), \\ M(i,k-1) + M(k+1,j-1) + \delta(k,j) \\ \text{for } i \le k < j. \end{cases}$$

- *M*(1,*n*) is the number of base pairs in the optimal base-paired structure for *s*[1...*n*].
- All these base pairs can be found by tracing back through the matrix *M*.
- Time complexity of the algorithm?

Time complexity of the algorithm

• O(n³), for all i, j, and k

An example

Zuker-Sankoff Model

- Stacks (contiguous nested base pairs) are the dominant stabilizing force – contribute the negative energy
- Unpaired bases form loops contribute the positive energy.
 - Hairpin loops, bulge/internal loops, and multiloops.
- Zuker-Sankoff minimum energy model. [Zuker and Sankoff (1984), Sankoff (1985)]
- Mfold and ViennaRNA are all based on this model. (this model is also called mfold model)

Zuker-Sankoff MFE model

[Lyngsø (1999)]

- Hairpin loop: eH(i, j) is the energy of the hairpin loop from i + 1 to j 1, which *closed* by base pair (i, j).
- Stacked base pairs: eS(i, j, i + 1, j 1) is the energy of the stacking base pairs (i, j) and (i + 1, j 1).
- Bulge and internal loop: eL(i, j, i', j') is the energy of the the bulge or internal loop starting from i+1 to i'-1 and from j'+1 to j'-1 which is *closed* by base pairs (i, j) and (i', j').
- Multi-loop: a is the energy of generating a multi-loop, b is the energy of one base pair that closes the multi-loop, and c is the energy of one unpaired base in the multi-loop.

Time complexity?

- O(n^4), why?
- We can reduce it to O(n^3) by slightly modifying the energy function

- W(i) holds the minimum energy of a structure on s[1...i].
- V(i,j) holds the minimum energy of a structure on s[i...j] with s[i] and s[j] forming a basepair.
- WM(i,j) holds the minimum energy of a structure on s[i...j] that is part of multiloop.

 $W(i) = \min\{W(i-1), \\ \min_{0 \le k < i} \{W(k) + V(k+1, i)\}\}.$

$$\begin{split} V(i,j) &= \min\{eH(i,j),\\ eS(i,j,i+1,j-1) + V(i+1,j-1),\\ \min_{\substack{i < i' < j' < j \text{ and } i'-i+j-j' > 2\\ min_{i+1 < k < j}} \{eL(i,j,i',j') + V(i',j')\}, \end{split}$$

$$\begin{split} WM(i,j) &= \min\{V(i,j) + b, \\ WM(i,j-1) + c, \\ WM(i+1,j) + c, \\ &\min_{i < k \leq j}\{WM(i,k-1) + WM(k,j)\}\}, \end{split}$$

• W(i) holds the minimum energy of a structure on s[1...i].

$$W(i) = \min\{W(i-1), \\ \min_{0 \le k < i} \{W(k) + V(k+1,i)\}\}.$$

- V(i,j) holds the minimum energy of a structure on s[i...j] with s[i] and s[j] forming a basepair.
- WM(i,j) holds the minimum energy of a structure on s[i...j] that is part of multiloop.

- W(i) holds the minimum energy of a structure on s[1...i].
- V(i,j) holds the minimum energy of a structure on s[i...j] with s[i] and s[j] forming a basepair.
- WM(i,j) holds the minimum energy of a structure on s[i...j] that is part of multiloop.

$$\begin{split} V(i,j) &= \min\{eH(i,j),\\ eS(i,j,i+1,j-1) + V(i+1,j-1),\\ \min_{\substack{i < i' < j' < j \text{ and } i'-i+j-j' > 2\\ min_{i+1 < k < j}} \{eL(i,j,i',j') + V(i',j')\}, \end{split}$$

- W(i) holds the minimum energy of a structure on s[1...i].
- V(i,j) holds the minimum energy of a structure on s[i...j] with s[i] and s[j] forming a basepair.

i i+1

i-1 i

 WM(i,j) holds the minimum energy of a structure on s[i...j] that is part of multiloop.
$$\begin{split} WM(i,j) &= \min\{V(i,j) + b, \\ WM(i,j-1) + c, \\ WM(i+1,j) + c, \\ \min_{i < k \leq j}\{WM(i,k-1) + WM(k,j)\}\}, \end{split}$$

RNAfold server

RNAfold	WebServer	1 Enter Input Parameters	2 View Results
		[Home Ne	w job[Help]
The RNAfold web predicitions.	server will predict secondary structures of single stranded RNA or DNA sequences. Current limits are 7,500 nt for partition function calculations and 10,000 nt for minimur	n free energy on	ly
Simply paste or up	load your sequence below and click Proceed. To get more information on the meaning of the options click the 🥑 symbols. You can test the server using this sample sequen	ce.	
Paste or type you	sequence here:		[clear]
GAGGTCTTAGCTTAA	TAAAGCAATTGATTTGCATTCAATAGATGTAGGATGAAGTCTTACAGTCCTTA		
Show constraint	folding		
Or upload a file in f	ASTA format: Choose File No file chosen		
Fold algorithm	and basic options		
۲	minimum free energy (MFE) and partition function 🥑		
\bigcirc	minimum free energy (MFE) only 🥹		
	no GU pairs at the end of helices 🥑		
	avoid isolated base pairs 🥑		
Show advanced	options		
Output options			
	interactive RNA secondary structure plot 🥹		
	RNA secondary structure plots with reliability annotation (Partition function folding only) 🥹		
	Mountain plot 🍘		
Notification via e-n	ail upon completion of the job (optional): your e-mail	Proceed »	
			,

GAGGTCTTAGCTTAATTAAAGCAATTGATTTGCATTCAATAGATGTAGGATGAAGTCTTACAGTCCTTA