EECS730: Introduction to Bioinformatics

Lecture 07: profile Hidden Markov Model

http://bibiserv.techfak.uni-bielefeld.de/sadr2/databasesearch/hmmer/profileHMM.gif

Slides adapted from Dr. Shaojie Zhang (University of Central Florida)

Information from multiple sequence alignments

- Protein/Gene family: homolog, ortholog, paralog, and xenolog
- Usually homologs are rooted form the same gene, diverged during evolution, and have similar biological functions
- Multiple alignments of homologous sequences usually reveal important sequence feature of the protein family and indicate its function
- We have discussed in the previous class how to build multiple sequence alignments from a set of homologous sequences

The revised homolog detection problem

The revised homolog detection problem

- Input: a set of homologous sequences from the same protein family, and a unannotated protein sequence
- Output: the likelihood that the unannotated protein sequence is also from the protein family
- Naïve solution: perform pairwise alignment between each sequence in the family with the unannotated protein sequence
- It could be very slow, and it may not reflect true homology

Can we summarize information of a protein family from MSA?

	*	. :	•	· *	: : :	•		
Q5E940_BOVIN	MPREDRATWKSN	Y <mark>F</mark> LK II<mark>Q</mark>LLDDY	(<mark>P</mark> KCFIV <mark>G</mark> ADNV <mark>GS</mark> K	<mark>QMQ</mark> Q IRMS LRGK	– AVV LM <mark>GKNT</mark> MM	R <mark>KAIRGHLE</mark> NNI	PALE	76
RLA0 HUMAN	M <mark>P</mark> REDR <mark>A</mark> TWKSN	Y <mark>F</mark> LK II<mark>Q</mark>LLDDY	(<mark>PKCFIVGAD</mark> NV <mark>GS</mark> K	<mark>QMQ</mark> Q IRMS LRGK	– AVV LM <mark>GKNT</mark> MM	R <mark>KAIRGHLE</mark> NN	PALE	76
RLA0 MOUSE	M <mark>P</mark> REDR <mark>A</mark> TWKSN	YFLKII <mark>Q</mark> LLDDY	(<mark>PKCFIVGAD</mark> NV <mark>GS</mark> K	<mark>QMQ</mark> Q IRMS LRGK	– AVV LM <mark>GKNT</mark> MM	R <mark>KAIRGHLE</mark> NNI	PALE	76
RLAO_RAT	M <mark>P</mark> REDR <mark>A</mark> TWKSN	Y <mark>FLKII<mark>Q</mark>LLDD</mark> Y	(<mark>P</mark> KCFIV <mark>G</mark> ADNV <mark>GS</mark> K	<mark>QMQ</mark> Q IRMS LRGK	– AVV LM <mark>GKNT</mark> MM	R <mark>KAIRGHLE</mark> NN	PALE	76
RLA0 CHICK	M <mark>P</mark> REDR <mark>A</mark> TWKSN	Y <mark>FMKIIQ</mark> LLDDY	(<mark>P</mark> KCFVV <mark>G</mark> ADNV <mark>GS</mark> K	<mark>QMQ</mark> Q IRMS LRGK	– AVV LM <mark>GKNT</mark> MM	R <mark>KAIRGHLE</mark> NNI	PALE	76
RLA0 RANSY	M <mark>P</mark> REDR <mark>ATWK</mark> SN	Y <mark>FLKIIQ</mark> LLDD <mark>Y</mark>	(<mark>P</mark> KCFIV <mark>G</mark> ADNV <mark>GS</mark> K	<mark>QMQ</mark> Q IRMS LRGK	– AVV LM <mark>GKNT</mark> MM	R <mark>KAIRGHLE</mark> NN	SALE	76
Q7ZUG3 BRARE	M <mark>P</mark> REDR <mark>A</mark> TWKSN	Y <mark>FLKIIQ</mark> LLDD <mark>Y</mark>	(<mark>P</mark> KCFIV <mark>G</mark> ADNV <mark>GS</mark> K	<mark>QMQ</mark> T IRLS LRGK	– AVV LM <mark>GKNT</mark> MM	R <mark>KAIRGHL</mark> ENNI	PALE	76
RLA0 ICTPU	MPREDRATWKSN	Y <mark>FLKIIQ</mark> LLND <mark>Y</mark>	(<mark>PKCFIVGAD</mark> NV <mark>GS</mark> K	<mark>QMQ</mark> T IRLS LRGK	– AIV LM <mark>GKNT</mark> MM	R <mark>KAIRGHLE</mark> NNI	PALE	76
RLA0 DROME	MVRENK <mark>A</mark> AWKAQ	Y <mark>FIKVVE</mark> LFDEF	F <mark>P</mark> KCFIV <mark>G</mark> ADNV <mark>GS</mark> K	<mark>QMQ</mark> N IRTS LRGL	– AVV LM <mark>GKNT</mark> MM	R <mark>KAIRGHLE</mark> NNI	PQLE	76
RLA0 DICDI	MSGAG-SKRKKL	FIEKATKLFTTY	<mark>dkmivaead</mark> fv <mark>gs</mark> s	QLQKIRKSIRGI	– <mark>gav lmgk</mark> ktmi	R <mark>KVIR</mark> DLADSK	PELD	75
Q54LP0 DICDI	MS <mark>G</mark> A <mark>G</mark> -SKR <mark>K</mark> NV	F <mark>IEKATKLF</mark> TT <mark>Y</mark>	ZDKMIVAEA <mark>d</mark> fv <mark>gs</mark> s	<mark>QLQ</mark> KIRKSIRGI	– <mark>gav lmgk</mark> k <mark>t</mark> mi	R <mark>KVIR</mark> DLADSK	PELD	75
RLA0 PLAF8	MAKLSKQQKKQM	Y <mark>IEKLSSLI</mark> QQ <mark>Y</mark>	SKILIVHV <mark>d</mark> nv <mark>gs</mark> n	QMAS VRKS LRGK	- ATILM <mark>GKNT</mark> RI	RTALKKNLQAV	PQIE	76
RLA0 SULAC	MIGLAVTTTKKIAKWKVD	E VAE LT <mark>E</mark> KLKTH	IKT IIIAN I <mark>EG</mark> F <mark>P</mark> AD	KLHE IRKK LRGK	- ADIKVTKNNLF	NI <mark>ALK</mark> NAG	YDTK	79
RLA0 SULTO	MRIMAVITQERK <mark>IA</mark> KWKIE	E V KE LE <mark>Q</mark> K LRE Y	HT IIIAN I <mark>EG</mark> FPAD	KLHD IRKKMRGM	- AE IKVTKNTLF	GIAAKNAG	LDVS	80
RLA0 SULSO	<mark>M</mark> KR <mark>L</mark> ALALKQRK <mark>VA</mark> S <mark>WK</mark> LE	E <mark>vkelteli</mark> kns	SNT ILI <mark>G</mark> NL <mark>EG</mark> FPAD	KLHE IRKK LRGK	- A <mark>T I K</mark> VTKNTLF	KI <mark>AAK</mark> NA <mark>G</mark>	IDIE	80
RLA0 AERPE	MSVVSLVGQMYKREK <mark>PIP</mark> EWKTL	MLRE LE <mark>E</mark> LFSKH	IRVVLFADLT <mark>GTPT</mark> F	V V QR V RKK LWKK	– <mark>YP</mark> MMVA <mark>K</mark> KRII	L <mark>RAMK</mark> AA <mark>G</mark> LE – – – :		86
RLA0 PYRAE	-MMLAIGKRRYVRTRQYPARKVK	IVSEAT <mark>E</mark> LLQK <mark>y</mark>	(<mark>PYVFLF</mark> DLH <mark>GLS</mark> SR	ILHE YRYR LRRY	- <mark>GVIKIIKPT</mark> LF	KI <mark>AF</mark> TK <mark>VY</mark> GG	I <mark>PAE</mark>	85
RLA0 MET AC	MAEERHHTEH IPQWKKD	E IEN IK <mark>E</mark> L IQSH	IKVF <mark>GMVGIEG</mark> ILAT	KMQK IRRD LKDV	-AVLKVSRNTLT	E <mark>RAL</mark> NQ <mark>LG</mark>	ET <mark>I P</mark>	78
RLA0 METMA	M <mark>A</mark> EERHHTEH <mark>IP</mark> QWKKD	E <mark>IENIK<mark>E</mark>LIQS<mark>H</mark></mark>	IKVF <mark>GMV</mark> RIEG <mark>I</mark> LAT	K IQK IRRD LKDV	-AVL <mark>KVSRNTL</mark> T	E <mark>RAL</mark> NQ <mark>LG</mark>]	es <mark>ip</mark>	78
RLA0 ARCFU	MAAVRGSPPEYKVR.	AVEE IKRMISSK	(<mark>PVVAIVSFRNVP</mark> AG	<mark>QMQ</mark> K IRRE FRGK	- AEIKVVKNTLL	E RALDALG	GDYL	75
RLAO METKA	MAVKAKGQPPSGYE <mark>P</mark> KVAEWKRR	E <mark>vkelk<mark>e</mark>lmde</mark> y	ENV <mark>GLVDLEG</mark> IPAP	QLQE IRAK LRER	DTII <mark>R</mark> MSRNTLM	RI <mark>AL</mark> EEK <mark>L</mark> DER	PELE	88
RLA0 METTH	MAHVAEWKKX	EVQELHDLIK <mark>G</mark> Y	EVV <mark>GIANL</mark> ADI <mark>P</mark> AR	<mark>QLQ</mark> KMRQT LRDS	-ALI <mark>RMSK</mark> KTLI	SL <mark>AL</mark> EK <mark>AG</mark> REL	ENVD	74
RLA0 METTL	<mark>M</mark> ITAESEHK <mark>IAPWK</mark> IE	E <mark>VNKLKELL</mark> KN <mark>G</mark>	QIVALVDMMEVPAR	QLQE IRDK IR-G	TM <mark>TL</mark> KM <mark>SRNT</mark> LI	E <mark>RAIKE VAE</mark> ET <mark>G</mark> NI	PEFA	82
RLA0 METVA	<mark>M</mark> IDAKSEHK <mark>IAPWK</mark> IE	E <mark>VNALKE</mark> LLKS <mark>A</mark>	N V IAL IDMME V PAV	QLQE IRDK IR-D	QM <mark>TL</mark> KM <mark>SRNT</mark> LI	K <mark>RAV</mark> EE VAEETGNI	PEFA	82
RLA0 METJA	METKVKAH <mark>VAPWK</mark> IE	E <mark>V</mark> KTLK <mark>G</mark> LIKSK	X <mark>P</mark> VVAIVDMMDVPAP	<mark>QLQ</mark> E IRDK IR-D	KVKL <mark>RMSRNT</mark> LI	I <mark>RALKE AAE</mark> E LNNI	PKLA	81
RLA0_PYRAB	MAH <mark>VA</mark> E <mark>WK</mark> KKI	EVEELANLIKSY	(<mark>P</mark> VIALVDVSSM <mark>P</mark> AY	<mark>PL</mark> SQMRRL IREN	<mark>ggllrvsrnt</mark> li	E L <mark>AIK</mark> KAA <mark>Q</mark> E L <mark>G</mark> KI	PELE	77
RLA0 PYRHO	MAH <mark>VA</mark> E <mark>WK</mark> KKI	E <mark>V</mark> EELAKLIKS <mark>y</mark>	(<mark>P</mark> VIALVDVSSM <mark>P</mark> AY	<mark>PL</mark> SQ <mark>MR</mark> RL <mark>IR</mark> EN	<mark>ggllrvsrnt</mark> li	E L <mark>AIK</mark> KAAKE L <mark>G</mark> K	PELE	77
RLA0_PYRFU	MAH <mark>VA</mark> E <mark>WK</mark> KKI	E <mark>V</mark> EELANLIKS <mark>y</mark>	(<mark>P</mark> VVALVDVSSM <mark>P</mark> AY	<mark>PL</mark> SQMRRL IREN	N <mark>GLLRVSRNT</mark> LI	E L <mark>AIK</mark> KVA <mark>Q</mark> E L <mark>G</mark> KI	PELE	77
RLA0 PYRKO	MAH <mark>VA</mark> E <mark>WK</mark> KKI	E <mark>VEEL</mark> ANIIKS <mark>Y</mark>	(<mark>P</mark> VIALVDVA <mark>G</mark> V <mark>P</mark> AY	<mark>PLSKMR</mark> DKLR-G	KALL <mark>RV<mark>SRNT</mark>LI</mark>	E L <mark>AIK</mark> RAA <mark>Q</mark> E L <mark>G</mark> QI	PELE	76
RLA0 HALMA	<mark>MSA</mark> ESERKTET <mark>IP</mark> EWKQE	EVDAIV <mark>e</mark> miesy	(ESVGVVNIA <mark>GIPS</mark> R	QLQDMRRDLHGT	- AEL <mark>RVSRNT</mark> LL	E RALDDVDI	D <mark>GL</mark> E	79
RLAO HALVO	<mark>M</mark> SESEVRQTEV <mark>IP</mark> Q <mark>WK</mark> RE	EVDELVDFIESY	(ESVGVVGVA <mark>GIPS</mark> R	QLQSMRRELHGS	- AAV <mark>R</mark> M <mark>SRNT</mark> LV	N <mark>RAL</mark> DE <mark>VN</mark>]	D <mark>GF</mark> E	79
RLA0 HALSA	<mark>MSA</mark> EEQRTTEE <mark>VP</mark> EWKRQ	EVAELVDLLETY	(DSV <mark>GVV</mark> NVT <mark>GIPS</mark> K	<mark>QLQ</mark> DM <mark>R</mark> RGLHGQ	- AAL <mark>R</mark> M <mark>SRNT</mark> LL	V <mark>RAL</mark> EE <mark>AG</mark>	D <mark>GL</mark> D	79
RLA0 THEAC	MKE <mark>V</mark> SQQ <mark>K</mark> KE	L <mark>V</mark> NE IT <mark>Q</mark> R IKAS	SRS <mark>VAIV</mark> D <mark>T</mark> A <mark>G</mark> IRTR	QIQ DIRGKNRGK	- INL <mark>KVIKKT</mark> LL	F <mark>KAL</mark> EN <mark>LG</mark> D]	EK <mark>l</mark> s	72
RLA0 THE VO	MRK <mark>I</mark> N <mark>P</mark> KKKE	I <mark>V</mark> SELA <mark>Q</mark> DITKS	KAVAIVDIK <mark>gv</mark> r <mark>t</mark> r	QMQDIRAKN <mark>R</mark> DK	-VKIKVVK <mark>KT</mark> LL	F <mark>KAL</mark> DS <mark>I</mark> NDI	EK <mark>L</mark> T	72
RLA0_PICTO	MTE <mark>PA</mark> QWKID	F <mark>V</mark> KNLENE INSF	RKV <mark>AAIV</mark> SIK <mark>G</mark> LRNN	EF <mark>Q</mark> KIRNSIRDK	- ARI <mark>KVSR</mark> ARLL	RL <mark>AI</mark> EN <mark>TG</mark> K]	N N <mark>I</mark> V	72
ruler	11020	30	40 5	0	70	80	90	

An intuitive way is to summarize column-wise frequency

GAGGTAAAC TCCGTAAGT CAGGTTGGA ACAGTCAGT TAGGTCATT TAGGTACTG ATGGTAACT CAGGTATAC TGTGTGAGT AAGGTAAGT

$$M_{k,j} = \frac{1}{N} \sum_{i=1}^{N} I(X_{i,j} = k),$$

$$M = \frac{A}{C} \begin{bmatrix} 3 & 6 & 1 & 0 & 0 & 6 & 7 & 2 & 1 \\ 2 & 2 & 1 & 0 & 0 & 2 & 1 & 1 & 2 \\ 1 & 1 & 7 & 10 & 0 & 1 & 1 & 5 & 1 \\ 4 & 1 & 1 & 0 & 10 & 1 & 1 & 2 & 6 \end{bmatrix}$$

$$M = \frac{A}{C} \begin{bmatrix} 0.3 & 0.6 & 0.1 & 0.0 & 0.0 & 0.6 & 0.7 & 0.2 & 0.1 \\ 0.2 & 0.2 & 0.1 & 0.0 & 0.0 & 0.2 & 0.1 & 0.1 & 0.2 \\ 0.1 & 0.1 & 0.7 & 1.0 & 0.0 & 0.1 & 0.1 & 0.5 & 0.1 \\ 0.4 & 0.1 & 0.1 & 0.0 & 1.0 & 0.1 & 0.1 & 0.2 & 0.6 \end{bmatrix}$$

https://en.wikipedia.org/wiki/Position_weight_matrix

Using the Position Specific Scoring Matrix

- Modified matching scores
 - Sum(p_{i,j} * score(j, a))

https://upload.wikimedia.org/wikipedia/commons/8/ 85/LexA gram positive bacteria sequence logo.png

- Keep the original setup for the gap penalty
- RPS-BLAST
- The gaps are not handled well, we need more advanced model to account for gaps

Introducing the Markov Model

• First-order Markov Chain

M = (Q, π, a)

Q – finite set of states, say |Q| = na – n x n transition probability matrix a(i,j)= Pr[q_{t+1}=j|g_t=i] π – n-vector, starting probability vector π (i) = Pr[q₀=i] For any row of a the sum of entries = 1 $\Sigma\pi$ (i) = 1

Hidden Markov Model (HMM)

Hidden Markov Model is a Markov model in which one does not observe a sequence of states but results of a function prescribed on states – in our case this is emission of a symbol (amino acid or a nucleotide).

States are hidden to the observers.

Emission probabilities

- Assume that at each state a Markov process emits (with some distribution) a symbol from alphabet Σ .
- Rather than observing a sequence of states we observe a sequence of emitted symbols.

Example: $\Sigma = \{A,C,T,G\}$. Generate a sequence where A,C,T,G have frequency p(A) =.33, p(G)=.2, p(C)=.2, p(T) = .27 respectively

HMM

- HMM is a Markov process that at each time step generates a symbol from some alphabet, Σ , according to emission probability that depends on state. M = (Q, Σ , π , a, e)
- Q finite set of states, say n states ={ $q_0, q_1, ...$ }
- a n x n transition probability matrix: $a(i,j) = Pr[q_{t+1}=j|g_t=i]$
- π n-vector, start probability vector: π (i) = Pr[q₀=i]
- $\Sigma = \{\sigma_1, ..., \sigma_k\}$ -alphabet
- $e(i,j) = Pr[o_t = \sigma_i | q_t = i]; o_t t^{th}$ element of generated sequences
- = probability of generating o_i in state q_i (S= o_0 ,... o_T the output sequence)

Occasionally dishonest casino

Summarizing MSA using HMM

If we simply consider MSA columns without gaps This is equivalent to PSSM

MSA to HMM

• Considering the Insertions

$$\log a_{\mathbf{M}_j\mathbf{I}_j} + \log a_{\mathbf{I}_j\mathbf{M}_{j+1}} + (k-1)\log a_{\mathbf{I}_j\mathbf{I}_j}.$$

MSA to HMM

Affine gap penalty

MSA to HMM, the complete model

How many states should we have

- The number of matching state is usually determined as the number of columns who have non-gap majority
- Number of insertion and deletion states determined correspondingly

Computing the parameters

Emission probability

$$e_k(a) = \frac{E_k(a)}{\sum_{a'} E_k(a')}$$

• Transition probability

$$a_{kl} = \frac{A_{kl}}{\sum_{l'} A_{kl'}}$$

HBA_HUMAN ...VGA--HAGEY... HBB_HUMAN ...V.---NVDEV... MYG_PHYCA ...VEA--DVAGH... GLB3_CHITP ...VKG----D... GLB5_PETMA ...VYS--TYETS... LGB2_LUPLU ...FNA--NIPKH... GLB1_GLYDI ... IAGADNGAGV... * * * * * * * *

How to align MSA profile to a sequence

$$V_{j}^{M}(i) = \log \frac{e_{M_{j}}(x_{i})}{q_{x_{i}}} + \max \begin{cases} V_{j-1}^{M}(i-1) + \log a_{M_{j-1}M_{j}}, \\ V_{j-1}^{I}(i-1) + \log a_{L_{j-1}M_{j}}, \\ V_{j-1}^{D}(i-1) + \log a_{D_{j-1}M_{j}}; \end{cases}$$
$$V_{j}^{I}(i) = \log \frac{e_{1j}(x_{i})}{q_{x_{i}}} + \max \begin{cases} V_{j}^{M}(i-1) + \log a_{M_{j}L_{j}}, \\ V_{j}^{I}(i-1) + \log a_{L_{j}L_{j}}, \\ V_{j}^{D}(i-1) + \log a_{D_{j}L_{j}}; \end{cases}$$
$$V_{j}^{D}(i) = \max \begin{cases} V_{j-1}^{M}(i) + \log a_{M_{j-1}D_{j}}, \\ V_{j-1}^{I}(i) + \log a_{L_{j-1}D_{j}}, \\ V_{j-1}^{D}(i) + \log a_{D_{j-1}D_{j}}. \end{cases}$$

Time complexity

• O(MN), where M is the number of states in HMM and N is the length of the observed sequence

Viterbi algorithm for generalized HMM

Algorithm: Viterbi

Initialisation (i = 0): $v_0(0) = 1, v_k(0) = 0$ for k > 0.

Recursion
$$(i = 1 \dots L)$$
: $v_l(i) = e_l(x_i) \max_k (v_k(i-1)a_{kl});$
 $\operatorname{ptr}_i(l) = \operatorname{argmax}_k (v_k(i-1)a_{kl}).$

Termination:
$$P(x,\pi^*) = \max_k(v_k(L)a_{k0});$$
$$\pi_L^* = \operatorname{argmax}_k(v_k(L)a_{k0}).$$

Traceback (i = L ... 1): $\pi_{i-1}^* = ptr_i(\pi_i^*)$.

Time complexity

 O(M²N), where M is the number of states in HMM and N is the length of the observed sequence

Limitation of the Viterbi path

Forward-backward algorithm

- Using Viterbi algorithm, we can calculate the most probable parse of the observed sequence given the HMM
- However, in many cases we want to calculate all probable parses that can give rise to the observed sequence given the HMM
- This can be very useful when there are many suboptimal paths that are nearly as good as the most probable path
- We can compute is using the Forward algorithm

Forward algorithm

$$f_k(i) = P(x_1 \dots x_i, \pi_i = k),$$

Algorithm: Forward algorithm

Initialisation (i = 0): $f_0(0) = 1$, $f_k(0) = 0$ for k > 0. Recursion $(i = 1 \dots L)$: $f_l(i) = e_l(x_i) \sum_k f_k(i-1)a_{kl}$. Termination: $P(x) = \sum_k f_k(L)a_{k0}$.

The need for decoding

What is the probability that an observed character comes from a given state???

$$P(x, \pi_i = k) = P(x_1 \dots x_i, \pi_i = k) P(x_{i+1} \dots x_L | x_1 \dots x_i, \pi_i = k)$$

= $P(x_1 \dots x_i, \pi_i = k) P(x_{i+1} \dots x_L | \pi_i = k),$

$$f_k(i) = P(x_1 \dots x_i, \pi_i = k),$$

$$b_k(i) = P(x_{i+1} \dots x_L | \pi_i = k).$$

Backward algorithm

Algorithm: Backward algorithm Initialisation (i = L): $b_k(L) = a_{k0}$ for all k.

Recursion
$$(i = L - 1, ..., 1)$$
: $b_k(i) = \sum_l a_{kl} e_l(x_{i+1}) b_l(i+1)$.
Termination: $P(x) = \sum_l a_{0l} e_l(x_1) b_l(1)$.

Decoding

$$P(\pi_i = k | x) = \frac{f_k(i)b_k(i)}{P(x)},$$

where P(x) is the result of the forward (or backward) calculation.

PFAM

HOME | SEARCH | BROWSE | FTP | HELP | ABOUT

Pfam 30.0 (June 2016, 16306 entries)

The Pfam database is a large collection of protein families, each represented by **multiple sequence alignments** and **hidden Markov models (HMMs)**. <u>More...</u>

QUICK LINKS	YOU CAN FIND DATA IN PFAM IN VARIOUS WAYS
SEQUENCE SEARCH	Analyze your protein sequence for Pfam matches
VIEW A PFAM ENTRY	View Pfam annotation and alignments
VIEW A CLAN	See groups of related entries
VIEW A SEQUENCE	Look at the domain organisation of a protein sequence
VIEW A STRUCTURE	Find the domains on a PDB structure
KEYWORD SEARCH	Query Pfam by keywords
JUMP TO	enter any accession or ID Go Example
	Enter any type of accession or ID to jump to the page for a Pfam entry or clan, UniProt sequence, PDB structure, etc.

Or view the help pages for more information

HMMER3 HMM

HMMER3/f [3.1 February 2013]											
NAME	globins4										
LENG	149										
ALPH	amino										
RF	no										
MM	no										
CONS	yes										
CS	no										
MAP	yes										
DATE	E Thu Feb 14 16:44:36 2013										
NSEQ	2 4										
EFFN	N 0.964844										
CKSUM	CKSUM 2027839109										
STATS	STATS LOCAL MSV -9.9014 0.70957										
STATS LOCAL VITERBI -10.7224 0.70957											
STATS	STATS LOCAL FORWARD -4.1637 0.70957										
HMM		A	С	D	E	F	G	Н	I	K	L
		m->m	m->i	m->d	i->m	i->i	d->m	d->d			
COM	20 2	2.36553	4.52577	2.96709	2.70473	3.20818	3.02239	3.41069	2.90041	2.55332	2.35210
	2	2.68640	4.42247	2.77497	2.73145	3.46376	2.40504	3.72516	3.29302	2.67763	2.69377
	(0.57544	1.78073	1.31293	1.75577	0.18968	0.00000	*			
	1 1	1.70038	4.17733	3.76164	3.36686	3.72281	3.29583	4.27570	2.40482	3.29230	2.54324
	2	2.68618	4.42225	2.77519	2.73123	3.46354	2.40513	3.72494	3.29354	2.67741	2.69355
	(0.03156	3.86736	4.58970	0.61958	0.77255	0.34406	1.23405			
• • •											
14	49 2	2.92198	5.11574	3.28049	2.65489	4.47826	3.59727	2.51142	3.88373	1.57593	3.35205
	2	2.68634	4.42241	2.77536	2.73098	3.46370	2.40469	3.72511	3.29370	2.67757	2.69331
	(0.22163	1.61553	*	1.50361	0.25145	0.00000	*			

DOWNLOAD DOCUMENTATION SEARCH PUBLICATIONS BLOG

HMMER: biosequence analysis using profile hidden Markov models