EECS730: Introduction to Bioinformatics

Lecture 07: profile Hidden Markov Model

http://bibiserv.techfak.uni-bielefeld.de/sadr2/databasesearch/hmmer/profileHMM.gif

Information from multiple sequence alignments

- Protein/Gene family: homolog, ortholog, paralog, and xenolog
- Usually homologs are rooted form the same gene, diverged during evolution, and have similar biological functions
- Multiple alignments of homologous sequences usually reveal important sequence feature of the protein family and indicate its function
- We have discussed in the previous class how to build multiple sequence alignments from a set of homologous sequences

The revised homolog detection problem

Can we use the unbiased centroid as

The revised homolog detection problem

- Input: a set of homologous sequences from the same protein family, and a unannotated protein sequence
- Output: the likelihood that the unannotated protein sequence is also from the protein family
- Naïve solution: perform pairwise alignment between each sequence in the family with the unannotated protein sequence
- It could be very slow, and it may not reflect true homology

Can we summarize information of a protein family from MSA?

Q5E940 BOVIN RLAO- HUMAN RLAO MOUSE RLA $\bar{A} 0$ RAT RLAO CHICK RLAO RANSY
Q7ZUG3 BRARE RLA 0^{-}ICTPU RLAO ${ }^{-}$DROME RLAO-DICDI
Q54LP0-DICDI RLA0_PLAF8 RLAO-SULAC RLAO ${ }^{-}$SULTO RLAO_SULSO RLAO-AERPE RLAO - PYRAE RLAO ${ }^{-}$METAC RLAO METMA - METMA RLAO_ARCFU RLA0-METKA RLAO - METTH RLAO ${ }^{-}$METTL RLAO METVA RLAO-METVA RLA0_METJA RLA0_PYRAB RLAO_PYRHO RLA0 -PYRFU RLA0_PYRKO RLAO-HALMA RLAO ${ }^{-}$halvo RLAO HALSA RLAO-HALSA
 RLAO_THEVO RLAO-PICTO ruler 1
-------------MPREDRATWKSN YFLKIIQLLDDYPKCFIVGADNVGSKQMQQIRMS LRGK

AVVLMGKNTMMRKAIRGHLENN--PALE ----------MPREDRATWKN YFLKIIQLLDDYPKCFIVGADNVGSKQMQQIRMS LRGK-AVV LMGKNTMMRKAIRGHLENN--PALE -----------MPREDRATWKSNYFLKIIQLLDDYPKCFIVGADNVGSKQMQQIRMS LRGK-AVVLMGKNTMMRKAIRGHLENN--PALE -----------MPREDRATWKSNYFMKIIQLLDDYPKCFV VGADNVGSKQMQQIRMS LRGK-AVVLMGKNTMMRKAIRGHLENN--PALE ----------MPREDRATWKSNYFLKIIQLLDDYPKCFIVGADNVGSKQMQQIRMS LRGK-AVVLMGKNTMMRKAIRGHLENN--SALE -----------MPREDRATWKSN YFLKIIQLLDDYPKCFIVGADNVGSKQMQT IRLS LRGK-AVVLMGKNTMMRKAIRGHLENN--PALE -----------MPREDRATWKSNYFLKIIQLLNDYPKCFIVGADNVGSKQMQTIRLSLRGK-AIVLMGKNTMMRKAIRGHLENN--PALE ----------MVRENKAAWKAQYFIKVVELFDEFPKCFIVGADNVGSKQMQNIRTSLRGL-AVVLMGKNTMMRKAIRGHLENN--PQLE ----------MSGAG-SKRKKLFIEKATKLFTTYDKMIV AEADFVGSSQLQKIRKSIRGI-GAVLMGKKTMIRKVIRDLADSK--PELD ----------MSGAG-SKRKNVFIEKATKLFTTYDKMIV AE ADFVGSSQLQKIRKSIRGI-GAVLMGKKTMIRKVIRDLADSK--PELD ---------MAKLSKQQKKQMYIEKLSSLIQQYSKILIVHVDNVGSNQMASVRKSLRGK-ATILMGKNTRIRTALKKNLQAV--PQIE ---MIGLAVTTTKKIAKWKVDEVAELTEKLKTHKTIIIANIEGFPADKLHEIRKKLRGK-ADIKVTKNNLFN IALKNAG-----YDTK -MRIMAVITQE RKIAKWKIE EVKELEQKLREYHTIIIANIEGFPADKLHDIRKKMRGM-AEIKVTKNTLFGIAAKNAG-----LDVS ---MKRLALALKQRKVASWKLE EVKELTELIKNSNTILIGNLEGFPADKLHEIRKKLRGK-ATIKVTKNTLFKIAAKNAG----IDIE MSVVSLVGOMYKRE KPIPEWKTLMLRELEELFSKHRVVLFADLTGTPTFVVORVRKKLGKK-YPMMVAKKRITIRAMKAAGLE---LDDN -MMLA IGKRRYVRTRQYPARKVKIVSEATELLQKYPYVFLFDLHGLSSRILHEYRYRLRRY-GVIKIIKPTLFKIAFTKVYGG---IPAE -----MAEERHHTEHIPQWKKDEIENIKELIQSHKVFGMVGIEGILATKMQKIRRDLKDV-AVLKVSRNTLTERALNQLG-----ETIP - - - - MAEERHHT EHIPQWKKDEIENIKELIQSHKVFGMVRIEGILATKIQKIRRDLKDV-AVLKVSRNTLTERALNQLG-----ESIP -----MAAVRGS---PPEYKVRAVEEIKRMISSKPVVAIVSFRNVPAGQMQKIRREFRGK-AEIKVVKNTLLERALDALG-----GDYL MAVKAKGQPPSGYEPKVAEWKRREVKELKELMDE YE NVGLVDLEGIPAPQLQE IRAKLRERDTIIRMSRNTLMR IALEEKLDER--PELE - - - - - MIT AESEHKAEWKKKEVQELHDLIKGYEVVGI ANLADIPARQLQKMRQTLRDS-ALIRMSKKTLIS LALEKAGREL--ENVD ------MITAESE HKIAPWKIE EVNKLKELLKNGQIVAL VDMMEVPARQLQEIRDKIR-GTMTLKMSRNTLIERAIKEVAEETGNPEFA ---MIDAKSE HKIAPWKIE EVNALKELLKSANVIALIDMMEVPAVQLQEIRDKIR-DQMTLKMSRNTLIKRAVEEVAEETGNPEFA -------METKVK AHVAPWKIE EVKTLKGLIKSKPVVAIVDMMDVPAPQLQEIRDKIR-DKVKLRMSRNTLIIRALKE AAEELNNPKLA ----------- MAHVAEWKKKEVEELANLIKSYPVIALVDVSSMPAYPLSQMRRLIRENGGLLRVSRNTLIE LAIKKAAQE LGKPELE -----------MAHVAEWKKKEVEELAKL IKSYPVIALVDVSSMPAYPLSQMRRLIRENGGLLRVSRNTLIELAIKKAAKE LGKPELE -----------MAHVAEWKKKEVEELANLIKSYPVVALVDVSSMPAYPLSQMRRLIRENNGLLRVSRNTLIE LAIKKVAQE LGKPELE -----------MAHVAE WKKKEVEELANIIKSYPVIALVDVAGVPAYPLSKMRDKLR-GKALLRVSRNTLIE LAIKRAAQE LGQPELE ----MSAESERKTETIPEWKQE EVDAIVEMIESYESVGVVNIAGIPSRQLQDMRRDLHGT-AELRVSRNTLLERALDDVD-----DGLE ---MSESEVRQTEVIPQWKRE EVDELVDF IESYESVGVVGVAGIPSRQLQSMRRE LHGS - AAVRMSRNTLVNRALDEVN---- - DGFE ----MSAEEQRTTEEVPEWKRQEVAELVDLLETYDSVGVVNVTGIPSKOLODMRRGLHGQ-AALRMSRNTLLVRALEEAG----- DGLD -----------MKEVSQQKKE LVNEITQRIKASRSVAIVDTAGIRTRQIQDIRGKNRGK-INLKVIKKTLLFKALENLGD----EKLS -----------MRKINPKKKE IVSELAQDITKSKAVAIVDIKGVRTRQMQDIRAKNRDK-VKIKVVKKTLLFKALDSIND----EKLT

An intuitive way is to summarize column-wise frequency

GAGGTAAAC
TCCGTAAGT
CAGGTTGGA
ACAGTCAGT
TAGGTCATT
TAGGTACTG
ATGGTAACT
CAGGTATAC
TGTGTGAGT
AAGGTAAGT

$$
M_{k, j}=\frac{1}{N} \sum_{i=1}^{N} I\left(X_{i, j}=k\right),
$$

$$
\begin{aligned}
& M=\begin{array}{l}
A \\
C \\
G \\
T
\end{array}\left[\begin{array}{lllcccccc}
3 & 6 & 1 & 0 & 0 & 6 & 7 & 2 & 1 \\
2 & 2 & 1 & 0 & 0 & 2 & 1 & 1 & 2 \\
1 & 1 & 7 & 10 & 0 & 1 & 1 & 5 & 1 \\
4 & 1 & 1 & 0 & 10 & 1 & 1 & 2 & 6
\end{array}\right] \\
& M=\begin{array}{l}
A \\
C \\
G \\
\\
T
\end{array}\left[\begin{array}{llllllllll}
0.3 & 0.6 & 0.1 & 0.0 & 0.0 & 0.6 & 0.7 & 0.2 & 0.1 \\
0.2 & 0.2 & 0.1 & 0.0 & 0.0 & 0.2 & 0.1 & 0.1 & 0.2 \\
0.1 & 0.1 & 0.7 & 1.0 & 0.0 & 0.1 & 0.1 & 0.5 & 0.1 \\
0.4 & 0.1 & 0.1 & 0.0 & 1.0 & 0.1 & 0.1 & 0.2 & 0.6
\end{array}\right]
\end{aligned}
$$

Using the Position Specific Scoring Matrix

- Modified matching scores
- $\operatorname{Sum}\left(\mathrm{p}_{\mathrm{i}, \mathrm{j}} * \operatorname{score}(\mathrm{j}, \mathrm{a})\right)$

- Keep the original setup for the gap penalty
- RPS-BLAST
- The gaps are not handled well, we need more advanced model to account for gaps

Introducing the Markov Model

- First-order Markov Chain
$M=(Q, \pi, a)$
Q - finite set of states, say $|\mathrm{Q}|=\mathrm{n}$
$\mathrm{a}-\mathrm{n} \times \mathrm{n}$ transition probability matrix

$$
a(i, j)=\operatorname{Pr}\left[q_{t+1}=j \mid g_{t}=i\right]
$$

π - n -vector, starting probability vector $\pi(\mathrm{i})=\operatorname{Pr}\left[\mathrm{q}_{0}=\mathrm{i}\right]$
For any row of a the sum of entries $=1$
$\Sigma \pi(\mathrm{i})=1$

Hidden Markov Model (HMM)

Hidden Markov Model is a Markov model in which one does not observe a sequence of states but results of a function prescribed on states - in our case this is emission of a symbol (amino acid or a nucleotide).

States are hidden to the observers.

Emission probabilities

- Assume that at each state a Markov process emits (with some distribution) a symbol from alphabet Σ.
- Rather than observing a sequence of states we observe a sequence of emitted symbols.

Example:

$\Sigma=\{\mathrm{A}, \mathrm{C}, \mathrm{T}, \mathrm{G}\}$. Generate a sequence where A,C,T,G have frequency $p(A)$ $=.33, \mathrm{p}(\mathrm{G})=.2, \mathrm{p}(\mathrm{C})=.2, \mathrm{p}(\mathrm{T})=.27$ respectively

HMM

HMM is a Markov process that at each time step generates a symbol from some alphabet, Σ, according to emission probability that depends on state.
$M=(Q, \Sigma, \pi, a, e)$
Q - finite set of states, say n states $=\left\{q_{0}, q_{1}, \ldots\right\}$
$a-n \times n$ transition probability matrix: $a(i, j)=\operatorname{Pr}\left[q_{t+1}=j \mid g_{t}=i\right]$
π - n -vector, start probability vector: $\pi(i)=\operatorname{Pr}\left[q_{0}=i\right]$
$\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{k}\right\}$-alphabet
$e(i, j)=\operatorname{Pr}\left[o_{t}=\sigma_{j} \mid q_{t}=i\right] ; o_{t}-t^{\text {th }}$ element of generated sequences
$=$ probability of generating o_{j} in state $q_{i}\left(S=o_{0}, \ldots o_{T}\right.$ the output sequence $)$

Occasionally dishonest casino

Summarizing MSA using HMM

If we simply consider MSA columns without gaps
This is equivalent to PSSM

MSA to HMM

- Considering the Insertions

MSA to HMM

MSA to HMM, the complete model

How many states should we have

- The number of matching state is usually determined as the number of columns who have non-gap majority
- Number of insertion and deletion states determined correspondingly

Computing the parameters

- Emission probability

$$
e_{k}(a)=\frac{E_{k}(a)}{\sum_{a^{\prime}} E_{k}\left(a^{\prime}\right)}
$$

- Transition probability

$$
a_{k l}=\frac{A_{k l}}{\sum_{l^{\prime}} A_{k l^{\prime}}}
$$

How to align MSA profile to a sequence

$$
\begin{aligned}
& V_{j}^{\mathrm{M}}(i)=\log \frac{e_{\mathrm{M}_{j}}\left(x_{i}\right)}{q_{x_{i}}}+\max \left\{\begin{array}{l}
V_{j-1}^{\mathrm{M}}(i-1)+\log a_{\mathrm{M}_{j-1} \mathrm{M}_{j}}, \\
V_{j-1}^{\mathrm{I}}(i-1)+\log a_{1_{j-1} \mathrm{M}_{j}} \\
V_{j-1}^{\mathrm{D}}(i-1)+\log a_{\mathrm{D}_{j-1} \mathrm{M}_{j}}
\end{array}\right. \\
& V_{j}^{\mathrm{I}}(i)=\log \frac{e_{1_{j}}\left(x_{i}\right)}{q_{x_{i}}}+\max \left\{\begin{array}{l}
V_{j}^{\mathrm{M}}(i-1)+\log a_{\mathrm{M}_{j} 1_{j}}, \\
V_{j}^{\mathrm{I}}(i-1)+\log a_{\mathrm{I}_{\mathrm{I}_{j}}}, \\
V_{j}^{\mathrm{D}}(i-1)+\log a_{\mathrm{D}_{j} \mathrm{I}}
\end{array}\right. \\
& V_{j}^{\mathrm{D}}(i)=\max \left\{\begin{array}{l}
V_{j-1}^{\mathrm{M}}(i)+\log a_{\mathrm{M}_{j-1} \mathrm{D}_{j}}, \\
V_{j-1}^{\mathrm{I}}(i)+\log a_{1_{j-1} \mathrm{D}_{j}}, \\
V_{j-1}^{\mathrm{D}}(i)+\log a_{\mathrm{D}_{j-1} \mathrm{D}_{j}} .
\end{array}\right.
\end{aligned}
$$

Time complexity

- $O(M N$), where M is the number of states in HMM and N is the length of the observed sequence

Viterbi algorithm for generalized HMM

Algorithm: Viterbi

Initialisation $(i=0): \quad v_{0}(0)=1, v_{k}(0)=0$ for $k>0$.
Recursion $(i=1 \ldots L): v_{l}(i)=e_{l}\left(x_{i}\right) \max _{k}\left(v_{k}(i-1) a_{k l}\right)$;

$$
\operatorname{ptr}_{i}(l)=\operatorname{argmax}_{k}\left(v_{k}(i-1) a_{k l}\right) .
$$

Termination:

$$
\begin{aligned}
& P\left(x, \pi^{*}\right)=\max _{k}\left(v_{k}(L) a_{k 0}\right) ; \\
& \pi_{L}^{*}=\operatorname{argmax}_{k}\left(v_{k}(L) a_{k 0}\right) .
\end{aligned}
$$

Traceback $(i=L \ldots 1): \pi_{i-1}^{*}=\operatorname{ptr}_{i}\left(\pi_{i}^{*}\right)$.

Time complexity

- $O\left(M^{2} N\right)$, where M is the number of states in HMM and N is the length of the observed sequence

Limitation of the Viterbi path

Forward-backward algorithm

- Using Viterbi algorithm, we can calculate the most probable parse of the observed sequence given the HMM
- However, in many cases we want to calculate all probable parses that can give rise to the observed sequence given the HMM
- This can be very useful when there are many suboptimal paths that are nearly as good as the most probable path
- We can compute is using the Forward algorithm

Forward algorithm

$$
f_{k}(i)=P\left(x_{1} \ldots x_{i}, \pi_{i}=k\right),
$$

Algorithm: Forward algorithm

Initialisation $(i=0): \quad f_{0}(0)=1, f_{k}(0)=0$ for $k>0$.
Recursion $(i=1 \ldots L): \quad f_{l}(i)=e_{l}\left(x_{i}\right) \sum_{k} f_{k}(i-1) a_{k l}$.
Termination:

$$
P(x)=\sum_{k} f_{k}(L) a_{k 0}
$$

The need for decoding

- What is the probability that an observed character comes from a given state???

$$
\begin{aligned}
P\left(x, \pi_{i}=k\right)= & P\left(x_{1} \ldots x_{i}, \pi_{i}=k\right) P\left(x_{i+1} \ldots x_{L} \mid x_{1} \ldots x_{i}, \pi_{i}=k\right) \\
= & P\left(x_{1} \ldots x_{i}, \pi_{i}=k\right) P\left(x_{i+1} \ldots x_{L} \mid \pi_{i}=k\right), \\
& f_{k}(i)=P\left(x_{1} \ldots x_{i}, \pi_{i}=k\right), \\
& b_{k}(i)=P\left(x_{i+1} \ldots x_{L} \mid \pi_{i}=k\right) .
\end{aligned}
$$

Backward algorithm

Algorithm: Backward algorithm

Initialisation $(i=L): \quad b_{k}(L)=a_{k 0}$ for all k.
$\operatorname{Recursion}(i=L-1, \ldots, 1): b_{k}(i)=\sum_{l} a_{k l} e_{l}\left(x_{i+1}\right) b_{l}(i+1)$.
Termination:

$$
P(x)=\sum_{l} a_{0 l} e_{l}\left(x_{1}\right) b_{l}(1)
$$

Decoding

$$
P\left(\pi_{i}=k \mid x\right)=\frac{f_{k}(i) b_{k}(i)}{P(x)}
$$

where $P(x)$ is the result of the forward (or backward) calculation.

PFAM

Pfam 30.0 (June 2016, 16306 entries)

The Pfam database is a large collection of protein families, each represented by multiple sequence alignments and hidden Markov models (HMMs). More...

QUICK LINKS YOU CAN FIND DATA IN PFAM IN VARIOUS WAYS...

SEQUENCE SEARCH
VIEW A PFAM ENTRY
VIEW A CLAN VIEW A SEQUENCE VIEW A STRUCTURE KEYWORD SEARCH

JUMP TO

Analyze your protein sequence for Pfam matches
View Pfam annotation and alignments
See groups of related entries
Look at the domain organisation of a protein sequence
Find the domains on a PDB structure
Query Pfam by keywords

Enter any type of accession or ID to jump to the page for a Pfam entry or clan, UniProt sequence, PDB structure, etc.

Or view the help pages for more information

HMMER3 HMM

```
HMMER3/f [3.1 | February 2013]
NAME globins4
LENG }14
ALPH amino
RF no
MM no
CONS yes
CS no
MAP yes
DATE Thu Feb 14 16:44:36 2013
NSEQ 4
EFFN 0.964844
CKSUM 2027839109
STATS LOCAL MSV
STATS LOCAL VITERBI -10.7224 0.70957
STATS LOCAL FORWARD -4.1637 0.70957
HMM A C D 
    COMPO 2. m->m
\begin{tabular}{lllll} 
& 2.68640 & 4.42247 & 2.77497 & 2.73145 \\
& 0.57544 & 1.78073 & 1.31293 & 1.75577 \\
1 & 1.70038 & 4.17733 & 3.76164 & 3.36686
\end{tabular}
\(2.68618 \quad 4.42225 \quad 2.77519 \quad 2.73123\)
    0.03156
    149 2.92198 5.11574 3.28049 2.65489
    2.68634 4.42241 2.77536 2.73098 3.46370
    0.22163 1.61553 * 1.50361 0.25145 0.00000
\begin{tabular}{ccrccc}
F & G & H & I & K & L \\
\(\mathrm{i}->\mathrm{i}\) & \(\mathrm{d}->\mathrm{m}\) & \(\mathrm{d}->\mathrm{d}\) & & & \\
3.20818 & 3.02239 & 3.41069 & 2.90041 & 2.55332 & 2.35210 \\
3.46376 & 2.40504 & 3.72516 & 3.29302 & 2.67763 & 2.69377 \\
0.18968 & 0.00000 & \(\star\) & & & \\
3.72281 & 3.29583 & 4.27570 & 2.40482 & 3.29230 & 2.54324 \\
3.46354 & 2.40513 & 3.72494 & 3.29354 & 2.67741 & 2.69355 \\
0.77255 & 0.34406 & 1.23405 & & & \\
& & & & & \\
4.47826 & 3.59727 & 2.51142 & 3.88373 & 1.57593 & 3.35205 \\
3.46370 & 2.40469 & 3.72511 & 3.29370 & 2.67757 & 2.69331 \\
0.25145 & 0.00000 & \(\star\) & & &
\end{tabular}

\section*{HMMER}

HMMER: biosequence analysis using profile hidden Markov models```

