EECS730: Introduction to Bioinformatics

Lecture 03: Edit distance and sequence alignment

Slides adapted from Dr. Shaojie Zhang (University of Central Florida)

KUMC visit

- How many of you would like to attend my talk on metagenomics?

DNA Sequence Comparison: First Success Story

- Finding sequence similarities with genes of known function is a common approach to infer a newly sequenced gene's function
- In 1984 Russell Doolittle and colleagues found similarities between cancer-causing gene (v-sys in Simian Sarcoma Virus) and normal growth factor (PDGF) gene
- Cancer is caused by normal growth gene being switched on at a wrong time

The human genome is not the most complex genome!!!
nearly 200 complete genomes have been sequenced

Evolutionary Rates

Sequence conservation implies important function

:Human:Chimp:Dog:Mouse:Rat

Sequence similarity

- Similar genes sequences will code for similar protein sequences
- Similar protein sequences should adopt similar folds (3D structures)
- Similar 3D structures imply similar functions
- Similar gene sequences may origin from the same ancestor and can provide information in evolution inference
- How do we quantify the sequence similarity???

Hamming distance?

> V: ATATATAT W: TATATATA

Hamming distance

$$
\begin{aligned}
& \text { V : ATATATAT-- } \\
& \text { W : --TATATATA }
\end{aligned}
$$

Alignment distance

Hamming distance underestimate the similarity of two strings, more sophisticated algorithm is needed!

Evolution at the DNA level

Sequence alignment

AgGCTATCACCTGACCTCCAGGCCGATGCCC
 TAGCTATCACGACCGCGGTCGATTTGCCCGAC

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACC $G \mathbf{C -}$ - GGTCGATTTGCCCGAC

Definition

Given two strings $\quad x=x_{1} x_{2} \ldots x_{M}, \quad y=y_{1} y_{2} \cdots y_{N}$,
an alignment is an assignment of gaps to positions
$0, \cdots, \mathrm{M}$ in x , and $0, \cdots, \mathrm{~N}$ in y , so as to line up each letter in one sequence with either a letter, or a gap in the other sequence

Sequence alignment cont.

AGGCTATCACCTGACCTCCAGGCCGATGCCC
 TAGCTATCACGACCGCGGTCGATTTGCCCGAC

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

What is the object function??? (and quantitative measure)

The Manhattan Tourist problem

- Computing similarity is detail-oriented, and we need to do some preliminary work first:
- The Manhattan Tourist Problem introduces grids, graphs and edit graphs

1 Carnegie Hall
2 Tiffony $\& 6$.
3 Sony Euilding
4 Museut of Modern Art
5 Four Sersors
6 St. Patrick's Cathedral
7 Generol Electric Euidding
a Rodio City Music Hall

9 The Taday Show
10 Parumount Building
11 Ny Times Euilding
12 Times Square
13 General Society of Mechonics and Trodesmen (a must seel)
14 Grond Central Terminal
15 Chrysler Buidirg

See the most stuff in the least time.

Manhattan Tourist Problem (MTP)

Imagine seeking a path (from source to sink) to travel (only eastward and southward) with the most number of attractions (${ }^{*}$) in the Manhattan grid

MTP formulation

> Goal: Find the longest path in a weighted grid.

Input: A weighted grid \mathbf{G} with two distinct vertices, one labeled "source" and the other labeled "sink"

Output: A longest path in G from "source" to "sink"

MTP example 1

MTP example 2

Simple recursion

```
MT(n,m)
    x}<MT(n-1,m)
        length of the edge from (n-1,m) to (n,m)
    y<MT(n,m-1)+
        length of the edge from (n,m-1) to (n,m)
    return max{x,y}
```

Slow!!! For the same reason that RecursiveChange is slow

MTP: Dynamic Programming

- Instead of recursion, store the result in an array S

MTP: Dynamic Programming cont.

MTP: Dynamic Programming cont.

MTP: Dynamic Programming cont.

MTP: Dynamic Programming cont.

MTP: Dynamic Programming cont.

MTP: recurrence function

Computing the score for a point (i,j) by the recurrence relation:

$$
s_{i, j}=\max \left\{\begin{array}{l}
s_{i-1, j}+\text { weight of the edge between }(i-1, j) \text { and }(i, j) \\
s_{i, j-1}+\text { weight of the edge between }(i, j-1) \text { and }(i, j)
\end{array}\right.
$$

the running time is $\mathbf{n x} \mathbf{m}$ for a \mathbf{n} by \mathbf{m} grid

$$
(\mathbf{n}=\# \text { of rows, } \mathbf{m}=\# \text { of columns })
$$

Manhattan is not a perfect grid

Manhattan is not a perfect grid cont.

- The score at point B is given by:

$$
s_{B}=\max \text { of }\left\{\begin{array}{l}
s_{A 1}+\text { weight of the edge }\left(A_{1}, B\right) \\
s_{A 2}+\text { weight of the edge }\left(A_{2}, B\right) \\
s_{A 3}+\text { weight of the edge }\left(A_{3}, B\right)
\end{array}\right.
$$

Manhattan is not a perfect grid cont.

Computing the score for point \mathbf{x} is given by the recurrence relation:

$$
s_{x}=\max \text { of }\left\{\begin{array}{l}
s_{y}+\text { weight of vertex }(\mathbf{y}, \mathbf{x}) \text { where } \mathbf{y} \epsilon \\
\text { Predecessors }(\mathbf{x})
\end{array}\right.
$$

- Predecessors (\mathbf{x}) - set of vertices that have edges leading to \mathbf{x}
- The running time for a graph $\mathbf{G}(\mathbf{V}, \mathbf{E})$, (\mathbf{V} is the set of all vertices and \mathbf{E} is the set of all edges) is $\mathbf{O (E)}$ since each edge is evaluated once

Traversing the Manhattan grid

-3 different strategies:
-a) Column by column
-b) Row by row
${ }^{\text {c) }}$ Along diagonals

b)

c)

Aligning DNA sequences

The Longest Common String (LCS) problem

- Given two sequences

$$
\mathbf{v}=v_{1} v_{2} \ldots v_{m} \text { and } \mathbf{w}=w_{1} w_{2} \ldots w_{n}
$$

- The LCS of \mathbf{v} and \mathbf{w} is a sequence of positions in

$$
\mathbf{v}: 1 \leq i_{1}<i_{2}<\ldots<i_{t} \leq m
$$

and a sequence of positions in

$$
\mathbf{w}: 1 \leq j_{1}<j_{2}<\ldots<j_{t} \leq n
$$

such that i_{t}-th letter of \mathbf{v} equals to j_{t}-letter of \mathbf{w} and \mathbf{t} is maximal

LCS example

| i coords: 0 | 1 | 2 | 2 | 3 | 3 | 4 | 5 | 6 | 7 | 8 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| elements of v | A | \mathbf{T} | -- | \mathbf{C} | -- | \mathbf{T} | \mathbf{G} | \mathbf{A} | \mathbf{T} | \mathbf{G} | |
| elements of w | -- | \mathbf{T} | \mathbf{G} | \mathbf{C} | \mathbf{A} | \mathbf{T} | -- | \mathbf{A} | -- | \mathbf{C} | |
| j coords: | 0 | 0 | 1 | 2 | 3 | 4 | 5 | 5 | 6 | 6 | 7 |

$$
(0,0) \rightarrow(1,0) \rightarrow(2,1) \rightarrow(2,2) \rightarrow(3,3) \rightarrow(3,4) \rightarrow(4,5) \rightarrow(5,5) \rightarrow(6,6) \rightarrow(7,6) \rightarrow(8,7)
$$

Matches shown in red
positions in v: $2<3<4<6$
positions in w: $1<3<5<6$
The LCS Problem can be expressed using the grid similar to MTP grid... Finding the heaviest path from the source to sink!!!

LCS: dynamic programming

- Find the LCS of two strings Input: A weighted graph G with two distinct vertices, one labeled "source" one labeled "sink"

Output: A longest path in G from "source" to "sink"
-Solve using an LCS edit graph
 with diagonals replaced with +1 edges

Edit graph for the LCS problem

LCS recursive function

Let $\mathbf{v}_{i}=$ prefix of \mathbf{v} of length i : $\quad \mathrm{v}_{1} \ldots \mathrm{v}_{\mathrm{i}}$
and $\mathbf{w}_{\mathrm{j}}=$ prefix of \mathbf{w} of length j : $\mathrm{w}_{1} \ldots \mathbf{w}_{\mathrm{j}}$
The length of $\operatorname{LCS}\left(\mathbf{v}_{\mathbf{i}}, \mathbf{w}_{\mathrm{j}}\right)$ is computed by:

$$
s_{i, j}=\max \left\{\begin{array}{l}
s_{i-1, j} \\
s_{i, j-1} \\
s_{i-1, j-1}+1 \text { if } v_{i}=w_{j}
\end{array}\right.
$$

An issue of the LCS

ATGTTAT

 ATCGTACLCS=5 | AT-GTTAT |
| :--- |
| ATCGT-AC |

AT-GTTAT-

- Does it mean that both alignments are equally good?
- The second one is more "gappy", which is not a good sign in alignment as it indicates frameshift
- Need a better object function for sequence similarity, suggestions?

The edit distance problem

Levenshtein (1966) introduced edit distance of two strings as the minimum number of elementary operations (insertions, deletions, and substitutions) to transform one string into the other

$$
\begin{aligned}
\mathrm{d}(\mathbf{v}, \mathbf{w})= & \text { MIN no. of elementary operations } \\
& \text { to transform } \mathbf{v} \rightarrow \mathbf{w}
\end{aligned}
$$

- The edit distance is considered as the evolution distance, as the edit is made by evolutionary force

Edit distance: example

- 5 edit operations: TGCATAT \rightarrow ATCCGAT
- TGCATA \rightarrow (delete last \top)
- TGCAT \rightarrow (delete last A)
- TGCAT \rightarrow (insert A at front)
- ATGCAT \rightarrow (substitute C for $3^{\text {rd }}$ G)
- ATCCAT \rightarrow (insert G before last A)
- ATCCGAT (Done)
- 4 edit operations: TGCATAT \rightarrow ATCCGAT
- TGCATAT \rightarrow (insert A at front)
- ATGCATA \rightarrow (delete $6^{\text {th }}$ T)
- ATGCATA \rightarrow (substitute G for $5^{\text {th }} \mathrm{A}$)
- ATGCGTA \rightarrow (substitute C for $3^{\text {rd }} \mathrm{G}$)
- ATCCGAT (Done)

Alignment: 2 row representation

Given 2 DNA sequences \mathbf{v} and \mathbf{w} :

$$
\begin{array}{lll}
\mathbf{v}: & \text { ATCTGAT } & \mathbf{m}=7 \\
\mathbf{w}: & \text { TGCATA } & \mathbf{n}=6
\end{array}
$$

Alignment : 2 * \mathbf{k} matrix ($\mathbf{k}>\mathbf{m}, \mathbf{n}$)
letters of v
letters of w

A	T	--	G	T	T	A	T	--
A	T	C	G	T	--	A	--	C

[^0]The Alignment Grid revisited

- 2 sequences used for grid
- V = ATGTTAT
- W = ATCGTAC
- Every alignment path is from source to sink

Alignments in edit graph

and \longrightarrow represent indels in
\mathbf{v} and \mathbf{w} with edit operation
1.
represent match or
mismatch with edit
operation of 0 or 1.

- The total number of edit operations of the alignment path is 4.

Alignment as path in the edit graph

Every path in the edit graph corresponds to an alignment:

Equivalently good solutions may present

Old Alignment 0122345677
$\mathrm{v}=\mathrm{AT}$ _GTTAT_
$\mathrm{w}=$ ATCGT_A_C 0123455667

New Alignment 0122345677
$\mathrm{v}=\mathrm{AT}$ _GTTAT_
w= ATCG_TA_C 0123445667

More details into edit distance solution

- Dynamic programming

$$
s_{i, j}=\left\{\begin{array}{l}
s_{i-1, j-1}+1 \text { if } v_{i}=w_{j} \searrow \\
s_{i-1, j} \downarrow \\
s_{i, j-1} \longrightarrow
\end{array}\right.
$$

Initializing the DP table

Initialize $1^{\text {st }}$ row and $1^{\text {st }}$ column to be all corresponding edit costs.

Filling the table

$$
\begin{aligned}
& S_{i, j}=\int S_{i-1, j-1} \text { value from NW +1, if } v_{i}=w_{j} \\
& \max \left\{\begin{array}{l}
S_{i-1, j} \longleftarrow \text { value from North (top) } \\
S_{i-1, j} \longleftarrow \text { value from West (left) }
\end{array}\right.
\end{aligned}
$$

Filling the table cont.

	$A T G$ G A A G							
$]^{0}$	${ }^{4}$	1	2	3	4	5	6	7
d	\vdash	0	14	2	3	4	5	6
G^{2}	N	1	0	$1{ }^{1}$	2	3	4	5
3	ω	2	1	2		2	3	4
\square^{4}	-	$3{ }^{1}$	2	2	2	1	2	3
5	\cdots	4	3	3	3	2	2	3
$\sim_{6} 6$	σ	5	4	4	4	3	2	3
$]_{7}$	\checkmark	6	5	5	5	4	3	3

Trace back: find the optimal edit graph and generate the alignment

1. PrintLCS (b, v, i, j)
2. if $i=0$ or $j=0$
3. return
4. if $b_{i, j}=$ " \backslash
5. $\quad \operatorname{PrintLCS}(\mathrm{b}, \mathrm{v}, i-1, j-7)$
6. print v_{i}
7. else
8. if $b_{i, j}=$ " \uparrow "
9. PrintLCS(b,v,i-l,ر)
10. else
11. PrintLCS(b,v,i,j-7)

Traceback

$w_{0}^{A} \underbrace{}_{2} G G_{3} G_{6} G_{6}$								
$\left[\begin{array}{l} A \\ \hline \end{array}\right.$	${ }^{4} 01$		2	3	4	5.	6	7
			14	2	3	4	5	6
G_{3}^{2}	N	1			2	3	-4	5
	ω	2	1 k	2		2	3	4
∇_{a}^{3}	-	3	2	2		1	2	3
T_{5}^{4}	\cdots	4	3	3	3		2	3
$[\Delta]_{0}^{2}$	の	5	4	4	4	3		3
$\overbrace{7}^{0}$	v	6	5	5	5	4	3	3

$$
\begin{aligned}
& \text { ATCG-TAC } \\
& ||||\mid * \\
& \text { AT-GTTAT }
\end{aligned}
$$

Running time

- It takes $\mathrm{O}(\mathrm{nm})$ time to fill in the $n * m$ dynamic programming matrix.
- Why $\mathrm{O}(n m)$? The pseudocode consists of a nested "for" loop inside of another "for" loop to set up a n * m matrix.

[^0]: 5 matches
 2 insertions
 2 deletions

